No. of Printed Pages : 2

21CHE3C9L

Sl. No.

M.Sc. III Semester Degree Examination, April/May - 2024 CHEMISTRY

Spectroscopy

(NEP)

Time: 3 Hours

Maximum Marks: 70

Note: Answer any five of the following questions with question No. 1 (Q.1) is Compulsory. Each question carries equal marks.

- 1. Explain the applications of rotational spectra in the determination of bond (a) length and moment of inertia. 5+5+4=14
 - Discuss the vibration and rotational spectra of carbon monoxide. (b)
 - Account on the vibration spectra of anharmonic oscillator with a suitable example. (c)
- Why the vibration frequency of C=C is higher compared to C-C ? Assign the 2. (a) different peak positions and corresponding bands for different peaks observed 5+5+4=14in the FT-IR spectra of propanenitrile and acetonitrile.
 - Describe the factors affecting group frequencies in FT-IR spectroscopy. (b)
 - Calculate the vibrational frequency of C-H bond provided velocity of light (c) = 3×10^8 m/s and force constant for the C-H bond is 5×10^5 dynes/cm.
- Illustrate the theory of NMR spectroscopy briefly. 3. (a)
 - (b) What is double resonance technique ? Explain its principle and applications with a suitable example.
 - An organic compound with molecular formula $C_5H_{11}Cl$ showed the following (c) ¹H NMR data (δ , ppm) : 1.1 (t, 3H), 1.6 (s, 6H) and 1.9 (q, 3H). Deduce the structure of the compound.
- Explain the principle and applications of MRI. 5+5+4=144. (a)
 - Discuss the application of ¹³C NMR spectroscopy in the study of keto-enol (b) tautomerism.
 - Why ¹³C NMR spectroscopy is less sensitive compared to ¹H NMR (c) spectroscopy ? Give the ¹³C chemical shifts of alkenes, alcohols and ethers.

5+5+4=14

21CHE3C9L

- 5. (a) With a neat schematics, explain the production of X-rays using Coolidge tube. Also explain the characteristics of X-rays.
 5+4+5=14
 - (b) Explain the principle and applications of TEM.
 - (c) Distinguish between electron diffraction and X-ray diffraction.
- 6. (a) A compound with a molecular weight of 102 shows the following spectral data : 5+5+4=14
 FT-IR (cm⁻¹) : 3070, 2970-2880, 1950-1870, 1610-1490, 1458, 743 and 692.
 ¹H NMR (δ, ppm) : 1.2 (t, 3H), 2.61 (q, 2H), 7.12 (s, 5H)
 Find the structure of the compound.
 - (b) Discuss the principle and applications of pulse techniques in NMR spectroscopy.
 - (c) Predict the FT-IR spectral peak position and corresponding functional groups of acetic acid, ethanol and diethyl ester.
- (a) With neat schematics, explain the principle and working of Raman spectrometer.
 5+5+4=14
 - (b) Discuss the rotational Raman spectra of a diatomic molecule with a suitable example.
 - (c) What is photoelectric effect ? Discuss the principle and ionization process involved in X-ray photoelectron spectroscopy.
- **8.** (a) Explain the applications of IR spectroscopy in the study of inorganic anions.
 - (b) Explain the principle and applications of 19 F NMR spectroscopy. 5+5+4=14
 - (c) What are Miller indices ? How it can be calculated ? Explain.

- 0 0 0 -

#