No. of Printed Pages : 3

21BSC5C6MTL

B.Sc. V Semester Degree Examination, April/May - 2024 MATHEMATICS

6, DSC-6 : Vector Calculus and Analytical Geometry (NEP)

Time : 2 Hours

Maximum Marks : 60

Note : Answer **all** sections.

SECTION - A

- 1. Answer the following sub-questions, each sub-question carries one mark. 10x1=10
 - (a) Prove that if two of three vectors are equal or parallel their scalar triple product vanishes.
 - (b) Write the Formulae of Serret-Frenet for space curve.
 - (c) If $\phi = x^2 y^2$ show that $\nabla^2 \phi = 0$
 - (d) Prove that Curl $(\operatorname{grad} \phi) = 0$
 - (e) State Stoke's theorem.
 - (f) Find the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ Using Green's theorem.
 - (g) If (4,2,3) are the direction ratio's of the straight line then find direction cosines of the straight line.
 - (h) Find the angle between the planes 3x-6y+2z+5=0 and 4x-12y+3z-3=0.
 - (i) Write the equation of sphere, its centre and radius.
 - (j) Define right circular cylinder.

P.T.O.

SECTION - B

Answer **any four** of the following questions. Each question carries **five** marks. **4x5=20**

- **2.** Prove that $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} & \overrightarrow{c} & \overrightarrow{c} \\ a & b & b & c \\ \end{bmatrix}$, $\begin{bmatrix} \overrightarrow{c} & \overrightarrow{c} & \overrightarrow{c} \\ c & b & c \\ \end{bmatrix}$.
- **3.** Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 3$ at the point (2, -1, 2).
- **4.** Evaluate $\iint_{S} \stackrel{\rightarrow}{F} \stackrel{\wedge}{n} ds$ when $\stackrel{\rightarrow}{F} = 4xzi y^{2}j + yzk$ and S is the surface of the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0 and z = 1 by divergence theorem.
- 5. Find the equation of the plane passing through the points (-1, -2, -3), (3, 4, 5), (0, 6, 2).
- **6.** Find the equation of the sphere which passes through the points (1, 0, 0), (0, 1, 0) (0, 0, 1) and (2, -1, 1).
- 7. Prove that Curl (Curl \vec{f}) = grad (div \vec{f}) $\nabla^2 \vec{f}$

SECTION - C

Answer **any three** of the following questions. Each question carries **ten** marks. **3x10=30**

- **8.** (a) For the Curve x=t, $y=t^2$, $z=t^3$ find the equation of the normal plane at t=1.
 - (b) A particle moves along a curve whose parametric equations are $x = e^{-t}$, $y = 2\cos 3t$, $z = 2\sin 3t$ Where 't' is the time.
 - (i) Find velocity at any time and its magnitude at t=0.
 - (ii) Find acceleration at any time and its magnitude at t=0.

21BSC5C6MTL

9. (a) If
$$\overrightarrow{\mathbf{r}} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$
, $\mathbf{r} = \begin{pmatrix} \rightarrow \\ \mathbf{r} \end{pmatrix}$ prove that $\nabla \cdot \begin{pmatrix} \mathbf{r} & \overrightarrow{\mathbf{r}} \end{pmatrix} = (\mathbf{n}+3)\mathbf{r}^{\mathbf{n}}$.

- (b) Find directional derivative of $\phi = x^2yz + 4xz^2$ at (1, -2, -1) along 2i j 2k.
- **10.** (a) Evaluate $\int_{C} \overrightarrow{F} \cdot d\overrightarrow{r}$ where $\overrightarrow{F} = xyi + (x^2 + y^2)j$ along the path of a straight line from (0, 0) to (1, 0) and then to (1, 1).
 - (b) Evaluate $\int_{C} \vec{F} \cdot d\vec{r}$, where $\vec{F} = 2yi + 3xj z^2k$ using Stoke's theorem, where 'C' is the boundary of upper half of the surface of the sphere $x^2 + y^2 + z^2 = 9$.
- 11. (a) Find the equation of the planes bisecting the angle between the planes 3x-4y+5z-3=0 and 5x+3y-4z-9=0.
 - (b) (i) Find the equation of the line passes through the point (1, -1, 1) and parallel to the vector i-j+k.
 - (ii) Find the equation of the line passing through the point (2, 5, 8) and (-1, 6, 3).
- 12. (a) Find the condition that the line $\frac{x-\alpha}{1} = \frac{y-\beta}{m} = \frac{z-\gamma}{n}$ should intersect the polar of the line.
 - (b) Find the equation of the tangent planes to the cone $9x^2 4y^2 + 16z^2 = 0$ which contain the line $\frac{x}{32} = \frac{y}{72} = \frac{z}{72}$.

- 0 0 0 -

3