No. of Printed Pages : 2

21BSC6C13CHL

B.Sc. VI Semester Degree Examination, Sept./Oct. - 2024 CHEMISTRY

DSC-7 : Advanced Inorganic and Physical Chemistry

(NEP)

Time : 2 Hours

Maximum Marks : 60

Note : Answer **all** sections.

SECTION - A

	Ans	wer the following sub-questions. Each sub-question carries one mark.	10x1=10			
1.	(a)	Define stepwise stability constant.	1			
	(b) What is kinetic stability of metal complexes ?					
	(c) Write the structure of trans-isomer of co-ordination number 4.					
	(d)	Give an example of weak field ligand.	1			
	(e)	What is Spectroscopic ground state ?	1			
	(f)	What is Racah parameter ?	1			
	(g)	Define partial molar volume.	1			
	(h)	Define activity coefficient.	1			
	(i)	What is ionic atmosphere ?	1			
	(j)	When ion pair formation is possible according to Bjerrum mode ?	1			

SECTION - B

Answer **any four** of the following questions. Each question carries **five** marks. **4x5=20**

2.	Write a note on	determination	of binary	formation	constant by	Polarigraphic	5
	method.						

- **3.** Explain the geometrical isomerism in co-ordination number 6 with example. **5**
- **4.** Discuss the colour of transition metal complexes on the basis of CFT.
- 5. Write a note on Tanaubo-Sugano diagrams.

P.T.O.

5

5

21BSC6C13CHL

- 6. Explain the following excess thermodynamic functions.
 - Excess Gibbs free energy (a)
 - (b) **Excess Entropy**
- 7. Explain Debye-Huckel theory for the problem of activity coefficient.

SECTION - C

Answer **any three** of the following questions. Each question carries **ten** marks. 3x10=30

- 8. Discuss briefly the factors affecting the stability of metal complexes with 6 (a) reference to nature of metal ion and ligand.
 - Derive the relationship between stepwise formation constants and overall (b) 4 formation constant.
- 9. Draw crystal field splitting diagram in tetrahedral and square planar geometry. 6 (a) Discuss the magnetic properties of octahedral complexes on the basis of 4 (b) CFT.
- Explain the determination of magnetic susceptibility of complexes by Gouy 6 **10.** (a) method.
 - Write a note on orbital contribution to magnetic property. (b)
- 6 **11.** (a) Define phase rule. Derive the phase rule from the concept of chemical potential. (b) Discuss the ideal and non-ideal systems in thermodynamics. 4
- **12.** (a) Derive an expression for electro capillary Lippmann's equation. 6 4
 - Explain briefly activation over potential. (b)

- 0 0 0 -

5

4

5