No. of Printed Pages : 2

21PHY4C11L

Sl. No.

M.Sc. IV Semester Degree Examination, Sept./Oct. - 2024 PHYSICS

Advanced Quantum Mechanics

(NEP)

Time : 3 Hours

Maximum Marks: 70

Note : Answer **any five** of the following questions with Question No.1 (Q1) is **Compulsory**, each question carries **equal** marks.

- (a) Obtain first and second order time dependent equations for a given physical 8 system using perturbation theory.
 - (b) Explain the Fermi-Golden rule and its role in estimating rate of transition **6** probability.
- **2.** (a) Construct symmetric and antisymmetric wave function for indistinguishable **5** particles.
 - (b) Obtain Clebsch-Gordan coefficients when two angular moments $j_1 = \frac{1}{2}$ and $\mathbf{9}$ $j_2 = \frac{1}{2}$.
- **3.** (a) Explain the conservation of linear momentum during a spatial displacement. **7**
 - (b) Define parity and explain its significance in space inversion symmetry. **7**
- **4.** (a) Discuss the Klein-Gordan equation for the free particle. **7**
 - (b) Establish Dirac's equation for an electron and calculate its magnetic moment. **7**
- 5. (a) Explain the concept of functional derivatives and their role in deriving the 7 Lagrange equation.
 - (b) Give an account of second quantization for a harmonic oscillator. **7**

P.T.O.

21PHY4C11L

2

6.	(a)	Calculate the expectation value of operators L^2 , Lx, Ly and Lz on a given eigen state $ 1,1\rangle$, $ 1,0\rangle$.	8
	(b)	Why time reversal operator is not linear ? Explain.	6
7.	(a)	Using Dirac's equation, obtain the energies of the bound states of H-atom.	8
	(b)	Explain the significance of the classical Hamiltonian from the Lagrangian formulation.	6
8.	(a)	Derive the matrix form of operator L^2 , L_+ , L and Lx for state 1=1.	5
	(b)	Show that bosons can occupy the same quantum state using Pauli's exclusion principle.	5
	(c)	Give the physical interpretation of Dirac's α and β matrices.	4

- 0 0 0 -

#