No. of Printed Pages : 2

21CHE2C5L

M.Sc. II Semester Degree Examination, Sept./Oct. - 2024 CHEMISTRY

Chemistry of Co-ordination Compounds

(NEP)

Time : 3 Hours	Maximum Marks · 70
	Maximum Marks . 70

Not	t e :	Answer any five of the following questions with question No.1 (Q1) is Compulsory.	
		Each question carries equal marks.	
1.	(a)	Describe the Jahn-Teller distortion in metal complexes, with an illustrative example.	5
	(b)	Analyze the different factors that influence the crystal field stabilization energy (CFSE).	5
	(c)	Outline the key characteristics of Valence Bond Theory and illustrate these principles using relevant examples.	4
2.	(a)	Draw a Tanabe-Sugano diagram of a complex and explain its features and illustrate its application.	5
	(b)	Provide a concise explanation of selection rules, highlighting their role and significance in spectroscopic transitions.	5
	(c)	Describe the importance and applications of term symbols in the context of spectroscopy.	4
3.	(a)	Explain the concept of classical magnetism in metal complexes, providing a pertinent example.	5
	(b)	Enumerate the phenomena of geometrical and optical isomerism in metal complexes.	5
	(c)	Describe the process of measuring magnetic susceptibility using the Gouy method.	4
4.	(a)	Briefly explain the procedure for determining the binary formation constant using the polarography method.	5
	(b)	Discuss the various factors that influence the stability of metal complexes.	5
	(c)	Explain the differences between step-wise and overall formation constants, detailing their relationship and significance in complex formation processes.	4

P.T.O.

21CHE2C5L

- 5. (a) Explain the concepts of complementary and non-complementary electrontransfer reactions, providing examples to elucidate each type.
 - (b) Analyze different types of substitution reactions in square planar complexes **5** with relevant examples.
 - (c) Define the trans effect and provide an overview of its significance in **4** substitution reactions occurring in square planar complexes.
- **6.** (a) Explain the mechanism of molecular rearrangement in six Co-ordinated **5** complexes with an example.
 - (b) Provide a concise explanation of the nephelauxetic parameter, in **5** Co-ordination chemistry.
 - (c) Analyze the impact of spin-orbit coupling on the electronic structure and **4** properties of atoms and molecules.

7.	(a)	Discuss how the chelate effect and the macrocyclic effect contribute to the stability of metal complexes.	5
	(b)	Provide a brief explanation of the trans effect in metal complexes.	5
	(c)	Analyze the various factors that influence the stability of metal complexes.	4
8.	(a)	Write a short note on Racah Parameters.	5
	(b)	Explain Ferro and Anti-Ferro Magnetism with suitable examples.	5
	(c)	With suitable example, explain the applications of Orgel diagrams.	4

- 0 0 0 -

2