No. of Printed Pages : 2

21PHY4E4AL

Sl. No.

M.Sc. IV Semester Degree Examination, Sept./Oct. - 2024 PHYSICS

Lasers and Optical Fibers

(NEP)

Time : 3 Hours

Maximum Marks: 70

5

Note : Answer **any five** of the following questions with Question **No.1** is **(Q1)** is **Compulsory**, each question carries **equal** marks.

- (a) With a neat diagram, explain the construction and working of edge emitting 9 semiconductor Laser.
 - (b) Discuss the applications of Lasers in thermonuclear reaction.
- 2. With a neat diagram explain the production of giant pulses using mechanical and 14 electro optical shutters.
- **3.** (a) Discuss the classical treatment of hyper-Raman effect. **5**
 - (b) Describe the experimental procedure used for the studies in saturation **9** spectroscopy.
- **4.** (a) Discuss the fabrication of an optical fibre using vapour oxidation process. **9**
 - (b) A silica optical fibre has a core refractive index of 1.50 and a cladding refractive index of 1.47. Determine (i) the critical angle at the core-cladding interface;
 (ii) the numerical aperture for the fibre.
- 5. (a) Give an account of linear and non-linear scattering losses of optical fibres.
 9 (b) Write a brief note on LED characteristics.
 5
- 6. (a) Discuss the Photo-acoustic Raman technique for detecting laser absorption.
 9 (b) Give an account on surface enhanced Raman spectroscopy.
 5

21PHY4E4AL

7.	(a)	Explain the types of optical fibres with their refractive index profile.	7
	(b)	Discuss the construction and working of surface emitter type of LED source for optical fibres.	7

- **8.** (a) Describe the experimental arrangement used to study the Doppler-free two **5** photon spectroscopy.
 - (b) Discuss briefly the applications of optical fibres in temperature and pollution **5** sensors.
 - (c) The mean optical power launched into an 8km length of fibre is 120μ W, the mean optical power at the fibre output is 3μ W. Determine (i) the overall attenuation in decibels; (ii) the signal attenuation per kilometre; (iii) the numerical input/output power ratio.

- o 0 o -

##