No. of Printed Pages : $\mathbf{2}$

21BSC6C13MAL

B.Sc. VI Semester Degree Examination, Sept./Oct. - 2024

MATHEMATICS

DSC - 7 : Linear Algebra

(NEP)

Time	e:2	Hours Maximum Marks : 60
Note	e :	Answer all sections.
SECTION - A		
1.	Answer the following sub-questions, each sub-question carries one mark. 10x1=10	
	(a)	Define Vector Subspaces.
	(b)	Show that the set $S = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ is Linearly independent in $V_3(R)$.
	(c)	If T : $V_1(R) \rightarrow V_3(R)$ is defined by $T(x) = (x, x^2, x^3)$, verify whether T is Linear or not.
	(d)	State Rank-Nullity Theorem.
	(e)	Define homomorphism of a Vector Space.
	(f)	Define Diagonalization of a Matrix.
	(g)	What are the conditions for invertibility ?
	(h)	Define Minimal polynomial of a transformation.
	(i)	What is inner product in a Vector Spaces ?
	(j)	Determine if the Vectors $u = (1, 2, -1)$ and $v = (2, -1, 1)$ are Orthogonal.
2.		SECTION - B wer any four of the following questions, each question carries five marks. 4x5=20 ress the Vectors $(2, -1, -8)$ as a linear combination of the Vectors $(1, 2, 1)$,
	(1, 1, -1) and $(4, 5, -2)$.	
3.	Define Basis and Dimension of V(F) determine whether the set $\{(1, 2, 3,), (-2, 1, 3), (3, 1, 0)\}$ is a basis of V ₃ (R).	
4.	Find the algebraic and geometric multiplicities of Eigenvalues of a linear	
	tran	Ansformation $A = \begin{pmatrix} 4 & 1 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.

5. Determine the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T\left(\left[\frac{x}{y}\right]\right) = \left[\frac{2x+y}{x-y}\right]$. Determine whether T is invertible or not. If so, find the inverse of T.

P.T.O.

21BSC6C13MAL

- 6. Show that the function $\langle -, \rangle : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ defined by $\langle u, v \rangle = \sum_{i=1}^3 uivi$, where $u = (u_1, u_2, u_3)$ and $v = (v_1, v_2, v_3)$ are Vectors in \mathbb{R}^3 is an inner product.
- 7. Diagonalize the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ represented by the Matrix $A = \begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix}$.

SECTION - C

Answer any three of the following questions, each question carries ten marks.

- 8. (a) The union of two subspaces of a Vector Space V over a field F is a subspace off one is contained in the other.
 - (b) Prove that (3, -7, 6) is the span of the Vectors (1, -3, 2), (2, 4, 1) and (1, 1, 1).
- 9. (a) Let T: V→W be a linear transformation defined by T(x, y, z) = (x+y, x-y, 2x+z). Find Range, null space, Rank, nullity and hence verify Rank-Nullity Theorem.
 (b) Find the Matrix of Linear Transformation T: V₂(R) → V₃(R) defined by T(x,y) = (2y-x, y, 3y-3x) relative basis B₁ = {(1, 1), (-1, 1)} and B₂ = {(1, 1, 1), (1, -1, 1) (0, 0, 1)}.
- **10.** (a) Find Eigen values and Eigen vectors of a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by A(v) = Av, where $A = \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix}$.
 - (b) Find the Eigen space of the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ represented by the Matrix $A = \begin{pmatrix} 4 & 1 \\ 2 & 3 \end{pmatrix}$.
- **11.** (a) Consider the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x + 2y \\ 2x + 4y \end{pmatrix}$ Determine whether T is singular or not.
 - (b) Determine the relationship between the minimal and characterstic polynomials of the linear transformation of $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by

$$T\left(\begin{bmatrix} x\\ y\end{bmatrix}\right) = \begin{bmatrix} 3x - y\\ 2x\end{bmatrix}.$$

- **12.** (a) State and prove Cauchy-Schwarz inequality.
 - (b) Define Orthonormal Basis and determine if the Set of Vectors

 $u = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right) v = \left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right) \text{ and } w = (0, 0, 1) \text{ forms an orthonormal basis for } \mathbb{R}^3.$

- 0 0 0 -

###