No. of Printed Pages : 3

21BSC6C15MAL

B.Sc. VI Semester Degree Examination, Sept./Oct. - 2024 MATHEMATICS

DSC-8 : Numerical Analysis

(NEP)

Time : 2 Hours Maximum Marks: 60 Answer **all** sections. Note : (i) Non-programmable calculator may be used. *(ii)* **SECTION - A** Answer all questions. 10x1 = 10(a) Round of 5^{th} digit in the number 0.56355. 1. (b) Define Relative Error. What is Iteration method ? (c) Write Secant method formula. (d)

(f) What we mean by diagonally dominated matrix ?

When we apply Seidal method on the system ?

(g) Prove that $\nabla = \Delta E^{-1}$.

(e)

- (h) Show that $\Delta \nabla = \Delta \cdot \nabla$.
- (i) Write the formula of Simpson's $\frac{3}{8}^{\text{th}}$ rule.
- (j) Write the formula of Weddle's rule.

21BSC6C15MAL

SECTION - B

Answer any four.

- **2.** If 0.182 is the approximate value of $\frac{2}{11}$, find the absolute Relative and percentage errors.
- **3.** The equation $x^4 x 10 = 0$ has one root between 1.8 and 2. Find the root correct to 3 places of decimal by the method of false position.
- **4.** Apply Gauss-Fordon method to solve.

10x+y+z = 12 x+10y+z = 12x+y+10z = 12

5. Find the number of students from the following data who secured marks not more than 45 marks.

Marks	30 - 40 40 - 5		50 - 60	60 - 70	70 - 80
No. of students	35	48	70	40	22

- 6. Evaluate $\int_{0}^{6} \frac{dx}{1+x^2}$ by using Simpson's $\frac{1}{3}^{rd}$ rule.
- 7. Using Newton-Rapson method, find the root near 2.9 of the equation $x + \log_{10}x = 3.375$ correct to four significant figures.

SECTION - C

Answer any three of the following questions.

- **8.** (a) Find the number of trustworthy figures in $(0.274)^3$ assuming that the number **4** 0.274 is correct to the last figure.
 - (b) Evaluate $\tan^{-1}\left[\frac{1}{2}\right]$ correct to six decimal places by using Taylor's expression. **6** Find the number of terms to be retained in the series for this purpose.
- 9. (a) Find the cube root of 15, correct to 4 significant figures by Iterative method.
 - (b) Find a real positive root of the equation $x^3 7x + 5 = 0$ by Bisection method upto fourth approximation.

2

4x5=20

3x10=30

- **10.** (a) Solve by Gauss Elimination method of 2x+y+z=10, 3x+2y+3z=18; x+4y+9z=16.
 - (b) Apply Jacobi iteration method, to solve 10x+y+z = 12; 2x+10y+z = 13; 2x+2y+10z = 14.
- **11**. (a) Using Newton's divided difference formula. Find the value of f(18) and f(15) from the table.

x	4	5	7	10	11	13
<i>f(x)</i>	48	100	294	900	1210	2028

(b) Apply Lagrange's formula to find f(5) given that f(1) = 2, f(2) = 4, f(3) = 8, f(7) = 128.

12. (a) Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x = 54 from the following table.

x	50	51	52	53	54
y	3.684	3.7084	3.7325	3.7563	3.7798

(b) Use Weddle's rule to evaluate $\int_{4}^{5.2} y_x \, dx$ given that :

х	4.0	4.2	4.4	4.6	4.8	5.0	5.2
y	1.386	1.435	1.482	1.526	1.569	1.6	1.649

- o 0 o -

##