No. of Printed Pages : 1

21PHY2C6L

Sl. No.

M.Sc. II Semester Degree Examination, Sept./Oct. - 2024 **PHYSICS**

Quantum Mechanics

(NEP)

Time : 3 Hours Maximu		Hours Maximum Marks :	ım Marks : 70	
Note	::	Answer any five of the following questions with Question No. 1 (Q1) is Compulson each question carries equal marks.	ry ,	
1.	(a)	Describe Planck's quantum hypothesis and its significance in explaining the black body radiation.	5	
	(b)	State and prove Ehrenfest's theorem $(F_x) = \frac{d(P_x)}{dt}$.	9	
2.	(a) (b)	Explain the degeneracy and non-degeneracy state of the quantum system. Solve the radial part of the Schrodinger wave equation of the hydrogen atom.	5 9	
3.	(a)	Explain the Hilbert space with an example.	6	
	(b)	Evaluate the commutators, $\begin{bmatrix} x, \frac{d}{dx} \end{bmatrix}$ and $\begin{bmatrix} \frac{d}{dx}, F(x) \end{bmatrix}$.	8	
4.	(a) (b)	Derive an expression for the linear harmonic oscillator by matrix method. Discuss the Bohr-Sommerfeld quantum condition.	7 7	
5.	(a) (b)	Obtain the expression for total scattering cross-section. Explain the Born approximation in the theory of scattering.	7 7	
6.	(a)	Normalize the wave function $\Psi(x) = A \exp(-ax^2)$, where 'A' and 'a' are constants over the domain $\infty \le x \le \infty$.	7	
	(b)	Discuss the algebra of Bra and Ket.	7	
7.	(a) (b)	Discuss the normal state of the He-atom using the variation method. Explain the nature of phase shift in the case of repulsive and attractive potentials.	6 8	
8.	(a) (b) (c)	Prove that Hermitian operators have real eigenvalues. Explain briefly the theory of alpha decay using the WKB approximation. Write a note on the optical theorem.	5 5 4	

- 0 0 0 -

###