No. of Printed Pages: 1

Sl. No.

M.Sc. IV Semester Degree Examination, Sept./Oct. - 2024 PHYSICS

Semiconductor Physics

(NEP)

Time: 3 Hours Maximum Marks: 70

Note:		Answer any five of the following questions with Question No.1 (Q1) Compulsory , each question carries equal marks.	
1.	(a) (b)	Explain the band structure of silicon. Obtain the expression for density of electrons in conduction band assuming the width of bands is comparable to forbidden gap.	6 8
2.	(a) (b)	Explain the impurity and exciton absorption in semiconductors. What is Hall effect? Explain the experimental determination of Hall coefficient.	8 6
3.	(a) (b)	Describe the band structure GaAs semiconductor. Explain the electronic conduction in amorphous semiconductors.	7 7
4.	(a) (b)	Describe the working principle of semiconductor laser. Discuss the working principle of junction transistor.	7 7
5.	(a) (b)	Explain the general properties of heterojunctions. Explain the growth of heterostructures by molecular beam epitaxy method.	7 7
6.	(a) (b)	What is luminescence? Explain different types of luminescene. Discuss the classification of amorphous semiconductors.	7 7
7.	(a) (b)	Explain the working principle of semiconductor lamp. Describe the tunnel barrier and quantum well with schematic.	8 6
8.	(a) (b) (c)	Differentiate between interband and intraband transitions. Write a note on switching mechanism in amorphous semiconductors. Write a note on super lattice.	5 5 4