No. of Printed Pages : 2

21BCA5C13DAL

Sl. No.

B.C.A. V Semester Degree Examination, Sept./Oct. - 2024 COMPUTER SCIENCE

DSC 13 : Design and Analysis of Algorithm

(NEP)

Time : 2 Hours

Maximum Marks: 60

10x1 = 10

SECTION - A

- I. Answer all the following sub-questions. Each sub-question carries one mark.
 - **1.** (a) Define an algorithm.
 - (b) What is recursive algorithm ?
 - (c) Write any two characteristics of an algorithm.
 - (d) What is time complexity ?
 - (e) What is Knapsack problem ?
 - (f) Define dynamic programming.
 - (g) Define Binary Search.
 - (h) What is Topological Sorting ?
 - (i) Define Binary Tree traversal.
 - (j) Name any two Greedy Techniques.

SECTION - B

- II. Answer any four of the following questions. Each question carries five marks. 4x5=20
 - **2.** Write a note on Asymptotic Notations.
 - **3.** Give general plan of mathematical analysis of recursive algorithm with example.
 - **4.** Write Quick Sort algorithm with an example.

21BCA5C13DAL

5. Apply brute force exhaustive search approach to solve Travelling Salesman Problem (TSP).

- **6.** Explain the characteristics of an algorithm.
- 7. Explain decision tree with an example.

SECTION - C

- III. Answer any three of the following questions. Each question carries ten marks. 3x10=30
 8. Write a note on Fundamentals of algorithm problem solving.
 - 9. Write and explain BFs algorithm with an example.
 - 10. Apply Greedy technique to solve the following instance of Knapsack problem. n=4, M=10, W₁, W₂, W₃, W₄ = {7, 3, 4, 5} V₁, V₂, V₃, V₄={42, 12, 40, 25}
 - 11. Write and explain Binary Search algorithm with an example.
 - 12. Explain Kruskal's algorithm.

- 0 0 0 -

##