No. of Printed Pages : 2

21BSC5C6PHL

B.Sc. V Semester Degree Examination, Sept./Oct. - 2024 PHYSICS

DSC 6 : Elements of Atomic, Molecular and Laser Physics (NEP)

Time : 2 Hours Maximum Marks :	Maximum Marks : 60
--------------------------------	--------------------

Answer the following sub-questions. Each sub-question carries one mark. 10x1=10

- **1.** (a) Define Bohr's radius.
 - (b) State correspondence principle.
 - (c) State Paulis exclusion principle.
 - (d) Define Stark effect.
 - (e) Define rigid rotator.
 - (f) Define Stoke's lines.
 - (g) Give one application of Raman effect.
 - (h) Expand LASER.
 - (i) Define Stimulated emission.
 - (j) Define ionisation potential.

Answer **any four** of the following. Each question carries **five** marks. **4x5=20**

- 2. Write a note on theory of alpha particle scattering.
- **3.** Derive an expression for magnetic dipole moment due to orbital motion of an electron.
- **4.** Write a note on phosphorescence.
- 5. Give the experimental setup of Raman effect.
- **6.** Write the requisites of LASER.
- 7. Write the classical theory of normal Zeeman effect.

21BSC5C6PHL

2

	Ans	wer any three of the following. Each question carries ten marks.	3x10=30
8.	(a)	Derive an expression for Bohr's radius and total energy of an electron.	7
	(b)	Write a note on Frank-Hertz experiment.	3
9.	(a)	Explain stark effect with experimental study.	5
	(b)	Explain Stern-Gerlach experiment.	5
10.	(a)	Derive an expression for classical and quantum theory of Raman effect.	7
	(b)	Explain Fluorescence.	3
11.	(a)	Write the construction and working of Nd:YAG Laser.	6
	(b)	Write four applications of LASER.	4
12.	(a)	Derive an expression for Einstein's Co-efficients.	5
	(b)	Using Bohr's model calculate the speed of the electron in a hydrogen at in the $n=1$, 2 and 3 levels.	tom 5

- 0 0 0 -

#