No. of Printed Pages : 3

21BSC4C4MTL

B.Sc. IV Semester Degree Examination, Sept./Oct. - 2024 MATHEMATICS

DSC - 4 : Integral Transform and Partial Differential Equations (NEP)

Time : 2 Hours

1.

Maximum Marks : 60

Note : Answer **all** Sections.

SECTION - A

Answer the following sub-questions, each sub-question carries one mark. 10x1=10(a) What is Laplace transform of t ?

- (b) What is inverse Laplace transform of $\left(\frac{1}{s+4}\right)$?
- (c) If $f(x) = x^3$ find the Fourier co-efficient of a_0 in $(-\pi, \pi)$.
- (d) Define periodic function.
- (e) Define Fourier sine transform.
- (f) Write inverse formula for Fourier transform.
- (g) What is the z-transform of n ?

(h) What is the inverse z-transform of
$$\left[\frac{z^2+z}{(z-1)^3}\right]$$
?

- (i) Give an example of partial differential equation.
- (j) A linear partial differential equation of the form is $P_p + Q_q = R$ is called ______.

SECTION - B

Answer any four of the following questions.

- **2.** Verify the Convolution theorem for the function f(t) = 1, g(t) = sint by applying Laplace transform.
- **3.** Obtain Fourier series of $f(x) = e^{-ax}$ in $-\pi < x < \pi$.

P.T.O.

4x5=20

21BSC4C4MTL

- **4.** Find the Fourier transform of $f(x)=e^{-|x|}$.
- **5.** Obtain the z-transform of $\cos n\theta$.
- **6.** Solve ptanx + qtany = tanz.
- 7. Obtain the Fourier series expansion of the function $f(x) = \begin{cases} x \text{ in } 0 < x < \pi \\ x 2\pi \text{ in } \pi < x < 2\pi \end{cases}$ Hence deduce that $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} + \dots$

SECTION - C

Answer any three of the following questions.

8. (a) Find the inverse Laplace transform of the function $\frac{3s^2 + 16s + 26}{s(s^2 + 4s + 13)}$

(b) Apply Laplace transform to solve $\frac{dx}{dt} = 2x - 3y$; $\frac{dy}{dt} = y - 2x$ given x(0) = 8 y(0) = 3

9. (a) Find the Fourier expansion for the function defined by $f(x) = \begin{cases} -1 \text{ in } -3 < x < 0\\ 0 \text{ in } x = 0\\ 1 \text{ in } 0 < x < 3 \end{cases}$

(b) Obtain half range sine series of function $f(x) = x^2$ in $0 < x < \pi$

- **10.** (a) Find the Fourier cosine transform of the function $f(x) = \begin{cases} x \ 0 < x < a \\ 0 \ \text{otherwise} \end{cases}$
 - (b) Modulation theorem : If F(x) has the Fourier transform f(s) then prove that $F(x) \cos(ax)$ has the Fourier transform $\frac{1}{2} [f(s-a)+f(s+a)]$

3x10=30

21BSC4C4MTL

11. (a) Given
$$Z_T(u_n) = \frac{2z^2 + 3z + 4}{(z-3)^3}$$
, $|z| > 3$ show that $u_1 = 2$, $u_2 = 21$

- (b) Solve the difference equation $y_{n+2} + y_n = 0$ by using z-transform.
- **12.** (a) Find the complete integral of px+qy=pq by Charpits method.
 - (b) Solve : $z^2(p^2x^2+q^2) = 1$

- o O o -

##