No. of Printed Pages : 3

21BSC5C6MTL

B.Sc. V Semester Degree Examination, Sept./Oct. - 2024 MATHEMATICS

DSC-6 : Vector Calculus and Analytical Geometry

(NEP)

Time : 2 Hours

Maximum Marks : 60

Note : Answer **all** sections.

SECTION - A

- 1. Answer the following sub-questions, each sub-question carries **one** mark. **10x1=10**
 - (a) Find the volume of parallelopiped whose co-terminous edges are 2i-3j+k, i-j+2k, 2i+j-k.
 - (b) Prove that, if two of three vectors are equal or parallel their scalar triple product vanishes.
 - (c) Find div \overrightarrow{F} if $\overrightarrow{F} = 3x^2i + 5xy^2j + xyz^3k$ at (1, 2, 3).
 - (d) Prove that div $\left(\operatorname{curl} \overrightarrow{f}\right) = 0$.
 - (e) State Stoke's theorem.
 - (f) Find the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ using Green's theorem.
 - (g) Find the angle between the planes 3x-6y+2z+5=0 and 4x-12y+3z-3=0
 - (h) Write the equation of the plane passing through the point (x_1, y_1, z_1) .
 - (i) Define right circular cylinder.
 - (j) Write the standard equation of the sphere, its centre and radius.

P.T.O.

SECTION - B

Answer **any four** of the following questions. Each question carries **five** marks. **4x5=20**

2. Find the value of P. Show that the vectors 2i-j+k, i+2j-3k and 3i+pj+5k are coplanar.

3. If
$$\overrightarrow{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$
 such that $\left|\overrightarrow{r}\right| = \mathbf{r}$ prove that $\nabla f(\mathbf{r}) = \left(\frac{f^1(\mathbf{r})}{\mathbf{r}}\right) \overrightarrow{r}$

- **4.** Evaluate $\int_{c} \vec{F} \cdot d\vec{r}$ where $\vec{F} = xyi + (x^2 + y^2)j$ along the path of a straight line from (0, 0) to (1, 0) and then to (1, 1).
- 5. Find the equation of the plane passing through the point 3i+3j+4k and perpendicular to the vector 12i-4j+3k. Reduce the equation to the normal form.
- **6.** Find the equation of the sphere which passes through the point (1, 0, 0), (0, 1, 0), (0, 0, 1) and its centre on the plane x+y+z=6.
- 7. Curl $\left(\operatorname{curl} \overrightarrow{f}\right) = \operatorname{grad} \left(\operatorname{div} \overrightarrow{f}\right) \nabla^2 \overrightarrow{f}$

SECTION - C

Answer any three of the following questions. Each question carries ten marks. 3x10=30

- **8.** (a) Show that $\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) = (\overrightarrow{a} \cdot \overrightarrow{c}) \overrightarrow{b} (\overrightarrow{a} \cdot \overrightarrow{b}) \overrightarrow{c}$
 - (b) For the curve x=t, $y=t^2$, $z=t^3$ find the equation of the normal plane at t=1.

9. (a) Find the directional derivative of $\oint = \frac{xz}{x^2 + y^2}$ at (1, -1, 1) in the direction of $\overrightarrow{A} = i - 2j + k$

(b) Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at the point (2, -1, 2).

21BSC5C6MTL

- **10.** (a) Verify Green's theorem $\oint_c (3x^2 8y^2) dx + (4y 6xy) dy$ where c is the boundary of the region defined by $y = \sqrt{x}$ and $y = x^2$.
 - (b) Using Gauss divergence theorem Evaluate $\iint_{s} (xi + yj + z^2k) \stackrel{\rightarrow}{n} ds$, where s is the closed surface bounded by the cone $x^2 + y^2 = z^2$ and the plane Z = 1.
- **11.** (a) Find the equation of the plane which passing through the points (2, 2, -1) and parallel to the line joining the points A(3, -1,0), B(2, 1, 0) and C(1, -1,0), D(-1, 2, 0).
 - (b) Find the equation of the line passing through the point (2, 5, 8) and (-1, 6, 3).
- 12. (a) Find the equation of the tangent plane to the cone $9x^2 4y^2 + 16z^2 = 0$ which contain the line $\frac{x}{32} = \frac{y}{72} = \frac{z}{72}$
 - (b) The radius of the normal section of the right circular cylinder is 2 units and the axis lies along the straight line $\frac{x-1}{2} = \frac{y+3}{-1} = \frac{z-2}{5}$ find its equation.

- 0 0 0 -

##